A spectral solution for linear diffusion in a simple landscape evolution model
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solving the linear diffusion term of a simple 2D, loosely
coupled landscape evolution model of elevation z(x,y): fixed e Boundary condition differences and interaction between
Figure 1. Schematic of boundary conditions and update configuration. This scheme is necessary to accommodate the he fluvial incisi U
lack of built-in periodic boundary conditions for fluvial incision in Landlab. The fluvial incision term is applied to the fluvial incision and diffusion terms appear to cause
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Where ¢ 1s tn.ne, IS Fhe uphft.ratg, E'is the fluvial incision e Spectral solutions can be extended for non-periodic bound-
rate, and D is the hillslope diffusion constant. dit;
Analysis of stability and accuracy B
e An implicit spectral solution for linear diffusion does not 107 w—True : :
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finite difference formulation lution to the diffusion equation is Gaussian: 1 107
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e The simplest spectral solution requires periodic boundary z(x,y) = (1% AzAy) D7 &P [— 1D —th] = . diverges
conditions in both dimensions, which can create tessellat- d 4
ing landscapes Where (1 x AxzAy) is the initial mass of the delta function. = 2‘ ' App'lcathn:
Results are shown in Figures 2 and 3. 0 10° - § ; . : !
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Figures 2,3. Test case, D = 1E-3, dt=2500, T=1E5. All models conform to true solution for Steady state drainage divides form Voronoi po|ygons
the grid sizes tested, except the explicit spectral solution. At N=256, D*dt/dx? = 0.164
Meth Ods 1000
. Landlab Diffuser Explicit Spectral Implicit Spectral
179 nela 1000
The hillslope diffustion equation is: = it epectra
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By taking the Fourier transform of equation (1) in both x and y directions, S B r
we obtain the spectral form of this problem for wavenumbers k, and k,: . - a
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where the wavenumber k., is: elevation is the same. N=64, D = 1E-3 m?/yr, k=3E-4 yr?, T=100 kyr - %
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The explicit form of this equation considers the right hand side of the c | 400 ) M% e A B
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At =D ( o kxnkm,ky _ kynkm,ky) (4) 24 3 4 64 % 128 Distance (m) three sinks are placed in each subgrid rather than one. For comparison, Voronoi
Number of grid cells N : : : : : olygons are overlain with the sinks as center points.
Figure 6. Comparison of the Landlab linear diffuser and spectral diffusers. polys P
The implicit (Crank-Nicholson) form of this equa,tion uses both time n Figure. 5. Mee}n elevation of the model domain for number of cells in the The subgrid has periodic boundary conditions, and a single sink in the
i . ) L . subgrid ranging from 24x24 to 128x128. Full results for selected N values center of the subgrid. D=1E-3 m?/yr, K=3E-4 yr, m=0.5, n=1, uplift rate = 1E-3
and time n 4+ 1 on the right side, and does not have the stability constraint are shown in Figure 6. dt=100, D = 1E-3 m?/yr, k=3E-4 yr'1, T=100 kyr. m/yr, dt =100 yr, T = 100kyr : . : : . qe
of the explicit form: e The combination of point sinks and periodic boundary
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